300_stars_in_orbit_1

Playing With Math — the Book

body_Book_cover_for_upload

There are only a few days left to reserve your copy of Playing With Math: Stories from Math Circles, Homeschoolers, and Passionate Teachers. I don’t have time to finish the review I hoped to write, so instead I’ll share some of my favorite quotes from the book:

What do mathematicians do? We play with math. What are little kids doing when they’re thinking about numbers, shapes, and patterns? They’re playing with math. You may not believe it yet, but you can have fun playing with math, too.

— Sue VanHattum, editor

We had a discussion at the end of the club on how we are all confused now, but pleasantly so, and how important it is to rejoice in confusion and to be comfortable with it. Adults often strive very hard to get rid of any and all possible traces of confusion for kids, making things dreadfully boring.

— Maria Droujkova, after a math circle exploration of infinity

All it talkes to do mathematics is opportunity, a frustrating problem, and a bit of stubbornness.

— Ellen Kaplan, math circle leader

Our own school experiences can make it hard for us to teach without being tempted to “help them master” a concept that they may or may not be ready to master. What we never learned in school was the concept of playing around with math, allowing ideas to “percolate,” so to speak, before mastery occurs, and that process may take time.

— Julie Brennan, homeschooler

4 hurricane learning lp md

The most profound learning often takes place silently and invisibly, in between activities and away from prying eyes. It is here that all those pieces of information, having been shaved from actual experience, are pulled inward to jostle against one another in various combinations and arrangements until gradually, or sometimes suddenly, a new understanding emerges.

— Holly Graff, unschooler

I do a mean T. Rex impression and the class was convulsed in giggles — the perfect way to enter a “hard” math lesson. I chucked the planned lesson for the day, and we went with the dinosaurs, and eventually various other creatures with different numbers of digits. I asked the class how the T. Rex would count. After all, it has only three fingers. I’ll admit to a lot of roaring and stomping as I, the T. Rex, became more and more frustrated trying to write a note to my mother in which I wanted to tell her that I had eaten those four velociraptors.

— Michelle Martin, elementary teacher

OLYMPUS DIGITAL CAMERA

It is the process of sharing — of not only creative and insightful problem-solving approaches, but also memorable moments filled with camaraderie, generosity, and incomparable joy. That is why I love math.

— Luyi Zhang, math major

Remember that joy and passion lead to more learning than duty ever did.

— Sue VanHattum, editor

This book truly captures the joy and passion of learning (and teaching) mathematics. Whether you love math and want to share it with your kids, or whether you fear and loathe math and need help getting over that hurdle so you won’t pass your fear on, Playing With Math will encourage you to see math more deeply and play with it more freely.

Excerpts from Playing With Math

If I’m reading the website aright, the crowdfunding campaign for Playing With Math: Stories from Math Circles, Homeschoolers, and Passionate Teachers ends in the early wee hours of Sunday morning. Be sure to place your order by Saturday, July 19th!


Get all our new math tips and games:  Subscribe in a reader, or get updates by Email.


About these ads
JoBoalerProportionalRelationships

Quotable: Math Connections

ConnectedGearsJoBoaler

It turns out that the people who do well in math are those who make connections and see math as a connected subject. The people who don’t do well are people who see math as a lot of isolated methods.

— Jo Boaler
Math Connections

If you or your children struggle with math, Boaler’s non-profit YouCubed.org may help you recover your joy in learning.


Get all our new math tips and games:  Subscribe in a reader, or get updates by Email.


Quotable: Math as a Second Language

Wenninger 94photo by fdecomite via flickr (CC BY 2.0)

I sat in class 3 days ago and though to myself, “They need a class called ‘Math as a second language’ or MSL for short.”

It is easy to understand what a median is, or what attributes a kite has, or why is a rectangle a square but a square not a rectangle… for a minute or a day.

It is easy to temporarily memorize a fact. But without true understanding of the concept those “definitions” fade. If the foundation of truly understanding is not there to begin with then there is little hope for any true scaffolding and even less chance of any true learning.

Duncan
Comment on Christopher Danielson’s Geometry and language


Get all our new math tips and games:  Subscribe in a reader, or get updates by Email.


Quotable: Focus on Being Silent

Children Reading Pratham Books and Akshara[Photo by Pratham Books via flickr (CC BY 2.0).]

I discovered this gem in my blog reading today. One of the secrets of great teaching:

Audrey seemed, for once, at a loss for words. She was thinking about the question.

I try to stay focused on being silent after I ask young children questions, even semi-serious accidental ones. Unlike most adults, they actually take time to think about their answers and that often means waiting for a response, at least if you want an honest answer.

If you’re only looking for the “right” answer, it’s fairly easy to gently badger a child into it, but I’m not interested in doing that.

Thomas Hobson
Thank You For Teaching Me

Learn Math by Asking Questions

The best way for children to build mathematical fluency is through conversation. For more ideas on discussion-based math, check out these posts:

And be sure to follow Christopher Danielson’s Talking Math with Your Kids blog!


Get all our new math tips and games:  Subscribe in a reader, or get updates by Email.


Youth Sports Baseball Camp

Quotable: Learning the Math Facts

feature photo above by USAG- Humphreys via flickr (CC BY 2.0)

During off-times, at a long stoplight or in grocery store line, when the kids are restless and ready to argue for the sake of argument, I invite them to play the numbers game.

“Can you tell me how to get to twelve?”

My five year old begins, “You could take two fives and add a two.”

“Take sixty and divide it into five parts,” my nearly-seven year old says.

“You could do two tens and then take away a five and a three,” my younger son adds.

Eventually we run out of options and they begin naming numbers. It’s a simple game that builds up computational fluency, flexible thinking and number sense. I never say, “Can you tell me the transitive properties of numbers?” However, they are understanding that they can play with numbers.

photo by Mike Baird via flickr

photo by Mike Baird via flickr

I didn’t learn the rules of baseball by filling out a packet on baseball facts. Nobody held out a flash card where, in isolation, I recited someone else’s definition of the Infield Fly Rule. I didn’t memorize the rules of balls, strikes, and how to get someone out through a catechism of recitation.

Instead, I played baseball.

John Spencer
Memorizing Math Facts

Conversational Math

The best way for children to build mathematical fluency is through conversation. For more ideas on discussion-based math, check out these posts:

Learning the Math Facts

For more help with learning and practicing the basic arithmetic facts, try these tips and math games:


Get all our new math tips and games:  Subscribe in a reader, or get updates by Email.


RIMG0186 Satellite dish

How To Master Quadratic Equations

G'Day Math logo

feature photo above by Junya Ogura via flickr (CC BY 2.0)

A couple of weeks ago, James Tanton launched a wonderful resource: a free online course devoted to quadratic equations. (And he promises more topics to come.)

Kitten and I have been working through the lessons, and she loves it!

We’re skimming through pre-algebra in our regular lessons, but she has enjoyed playing around with simple algebra since she was in kindergarten. She has a strong track record of thinking her way through math problems, and earlier this year she invented her own method for solving systems of equations with two unknowns. I would guess her background is approximately equal to an above-average algebra 1 student near the end of the first semester.

After few lessons of Tanton’s course, she proved — within the limits of experimental error — that a catenary (the curve formed by a hanging chain) cannot be described by a quadratic equation. Last Friday, she easily solved the following equations:

\left ( x+4 \right )^2 -1=80

and:

w^2 + 90 = 22 w - 31

and (though it took a bit more thought):

4x^2 + 4x + 4 = 172

We’ve spent less than half an hour a day on the course, as a supplement to our AoPS Pre-Algebra textbook. We watch each video together, pausing occasionally so she can try her hand at an equation before listening to Tanton’s explanation. Then (usually the next day) she reads the lesson and does the exercises on her own. So far, she hasn’t needed the answers in the Companion Guide to Quadratics, but she did use the “Dots on a Circle” activity — and knowing that she has the answers available helps her feel more independent.

Continue reading

Math Teachers at Play #62

by Robert Webb

Do you enjoy math? I hope so! If not, browsing this post just may change your mind. Welcome to the Math Teachers At Play blog carnival — a smorgasbord of ideas for learning, teaching, and playing around with math from preschool to pre-college.

Let the mathematical fun begin!

POLYHEDRON PUZZLE

By tradition, we start the carnival with a puzzle in honor of our 62nd edition:

An Archimedean solid is a polyhedron made of two or more types of regular polygons meeting in identical vertices. A rhombicosidodecahedron (see image above) has 62 sides: triangles, squares, and pentagons.

  • How many of each shape does it take to make a rhombicosidodecahedron?
Click for full-size template.

Click for template.

My math club students had fun with a Polyhedra Construction Kit. Here’s how to make your own:

  1. Collect a bunch of empty cereal boxes. Cut the boxes open to make big sheets of cardboard.
  2. Print out the template page (→) and laminate. Cut out each polygon shape, being sure to include the tabs on the sides.
  3. Turn your cardboard brown-side-up and trace around the templates, making several copies of each polygon. I recommend 20 each of the pentagon and hexagon, 40 each of the triangle and square.
  4. Draw the dark outline of each polygon with a ballpoint pen, pressing hard to score the cardboard so the tabs will bend easily.
  5. Cut out the shapes, being careful around the tabs.
  6. Use small rubber bands to connect the tabs. Each rubber band will hold two tabs together, forming one edge of a polyhedron.

So, for instance, it takes six squares and twelve rubber bands to make a cube. How many different polyhedra (plural of polyhedron) will you make?

  • Can you build a rhombicosidodecahedron?

And now, on to the main attraction: the 62 blog posts. Many of the following articles were submitted by their authors; others were drawn from the immense backlog in my blog reader. If you’d like to skip directly to your area of interest, here’s a quick Table of Contents:

Continue reading

Quotable: The Adventure of Learning Math

Math mascot Moby Snoodles

As for mathematics itself, it’s one of the most adventurous endeavors a young child can experience. Mathematics is exotic, even bizarre. It is surprising and unpredictable. And it can be more exciting, scary and dangerous than sailing the high seas!

But most parents and educators don’t present math this way. They just want the children to develop their mathematical skills rather than going for something more nebulous, like the mathematical state of mind.

Children marvel as snowflakes magically become fractals, inviting explorations of infinity, symmetry and recursion. Cookies offer gameplay in combinatorics and calculus. Paint chips come in beautiful gradients, and floor tiles form tessellations. Bedtime routines turn into children’s first algorithms. Cooking, then mashing potatoes (and not the other way around!) humorously introduces commutative property. Noticing and exploring math becomes a lot more interesting, even addictive.

Unlike simplistic math that quickly becomes boring, these deep experiences remain fresh, because they grow together with children’s and parents’ understanding of mathematics.

— Maria Droujkova and Yelena McManaman
Adventurous Math For the Playground Set (Scientific American online)


Don’t miss any of “Let’s Play Math!”:  Subscribe in a reader, or get updates by Email.


Quotable: Why Study Algebra?

Blocks

[Photo by AlphaTangoBravo / Adam Baker via flickr.]

One reason to study algebra: because it’s a building block. And just as it was really hard at first to get those blocks to do what you wanted them to do, so also it can be really hard at first to get algebra to work. But if you persevere, who knows what you might build someday?

Algebra is the beginning of a journey that gives you the skills to solve more complex problems.

So, try not to think of Algebra as a boring list of rules and procedures to memorize. Consider algebra as a gateway to exploring the world around us all.

— Jason Gibson
Why Study Algebra?


Get all our new math tips and games:  Subscribe in a reader, or get updates by Email.


Central City Times Tables

Trouble with Times Tables

[feature photo above by dsb nola via flickr.]

Food for thought:

Imagine that you wanted your children to learn the names of all their cousins, aunts and uncles. But you never actually let them meet or play with them. You just showed them pictures of them, and told them to memorize their names.

Each day you’d have them recite the names, over and over again. You’d say, “OK, this is a picture of your great-aunt Beatrice. Her husband was your great-uncle Earnie. They had three children, your uncles Harpo, Zeppo, and Gummo. Harpo married your aunt Leonie … yadda, yadda, yadda.

— Brian Foley
Times Tables – The Worst Way to Teach Multiplication

On the other hand, if you want your children to develop relationships with the numbers, to learn the math facts naturally, then be sure to tell lots of math stories. And when you are ready to focus on multiplication, be sure to study the patterns and relationships within the times tables.


Get all our new math tips and games:  Subscribe in a reader, or get updates by Email.


Quotable: We’ve Been Blind

I finally got around to reading a bit of the backlog in my Google Reader. I love Malke’s blog!

I used to think that math was some kind of inaccessible, abstract magic trick, a sort of in-joke that excluded us common folk, but now I realize that math is completely not that at all. The reality of math as most of us know it is like that story where three men are standing in a dark room touching different parts of an elephant. None of them has the full picture because they’re only perceiving individual elements of the whole animal.

The reality, I’m discovering, is that math is just like that elephant: a large, expansive, three-dimensional, intelligent, sensitive, expressive creature.

The problem is that most of us have been standing around in that dark room since about kindergarten, grasping its tail, thinking “this is what math is and, personally, I don’t think it’s for me.” We’ve been blind to the larger, incredibly beautiful picture that would emerge if only we would turn on the lights and open our eyes.

Malke Rosenfeld
The Elephant in the Room


Get all our new math tips and games:  Subscribe in a reader, or get updates by Email.


Abstraction in Language and in Math

photo by Robert Couse-Baker via flickr creative commons

Check out Dan’s interesting semi-philosophical discussion of the meaning and importance of abstraction:

The physical five oranges goes up the ladder to the picture of the five oranges which goes up to the representation of the five oranges as a numeral.

This points in the direction of a definition of abstraction: when we abstract we voluntarily ignore details of a context, so that we can accomplish a goal.

Dan Meyer

Continue reading

Quotable: The Art of Teaching

Most remarks made by children consist of correct ideas very badly expressed. A good teacher will be very wary of saying ‘No, that’s wrong.’ Rather, he will try to discover the correct idea behind the inadequate expression. This is one of the most important principles in the whole of the art of teaching.

W. W. Sawyer
Vision in Elementary Mathematics


Get all our new math tips and games:  Subscribe in a reader, or get updates by Email.


Quotations XXVI: On Teaching Math

photo by chrisrobinson1945 via flickr

As I continue to polish the manuscript for my math games book, I’ve been looking for short quotations to put at the beginning of each chapter. I’ve gathered a lot of math quotations over the years, from my own reading and from quote-collection websites. But there’s a problem with using most of these in a book, since to do it right I would have to dig up the original source of each quote and then write a letter to the publisher for permission to use it. And pay a fee that, depending on the publisher’s sense of self-importance, can run into the hundreds of dollars. Bother!

So I went digging around my rss reader to see what sort of inspiration I could find. Bloggers love to be quoted, right? And most of them are happy to give permission via email, which makes my job ever so much easier.

Here are some of the gems I’m considering. I’d love to hear your favorite quotes from math bloggers, too — or favorite passages from your own blog. Please comment!

It’s amazing that this vision of math as “getting to the right answer on your first try” even exists. I have to make, unmake, remake so many mistakes to get where I’m going. I think all mathematicians work that way.

Somehow, a big part of the experience of math is trouble. Frustration is the status quo. But when you get something—the thrill!

Dan Finkel
Good Mistakes, Constant Mistakes

Continue reading

Quotable: Math vs. Writing

Seen at kitchen table math, the sequel:

I can recall the deep satisfaction I felt on the all-too-rare occasions at school when the concepts or formulas fell into place. It seemed an entirely different discipline from writing, where something arises from a blank page through a combination of hard work and patience, with a sliver of creativity.

With math, the experience is more like discovering something that’s always existed and finally decided to stop playing hard-to-get.

Ralph Gardner
Making Math Fun (Seriously)

Continue reading

Still Relevant After All These Years

We have an interesting discussion going in the comments on The Problem with Manipulatives. I mentioned a vague memory of a quotation. Now I’ve found the source.

Originally published in 1970:

The continuing hullabaloo about the “new math” has given many a parent a false impression. What was formerly a dull way of teaching mathematics by rote, so goes the myth, has suddenly been replaced by a marvelous new technique that is achieving miraculous results throughout the nation’s public schools.

I wish it were true — even if only to the extent implied by entertainer (and math teacher) Tom Lehrer in his delightfully whimsical recording on “The New Math”:
“In the new approach, as you know, the important thing is to understand what you’re doing, rather than to get the right answer.”

… Indeed, there is something to be said for the old math when taught by a poorly trained teacher. He can, at least, get across the fundamental rules of calculation without too much confusion. The same teacher trying to teach new math is apt to get across nothing at all…

Martin Gardner
Foreword to Harold Jacobs’ Mathematics: A Human Endeavor

Unfortunately, I can’t embed the Tom Lehrer song Gardner mentioned, due to copyright restrictions, but here’s a link to YouTube:


Don’t miss any of “Let’s Play Math!”:  Subscribe in a reader, or get updates by Email.


Quotable: Math is a Game

I don’t love math nearly as much as I pretend I do when I’m teaching it or blogging about it or trying to enthuse my kids.

I just believe — ever since an eye-opening university-level Mathematics in Perspective course — that math is taught VERY badly, bumbled and fumbled and as a result we have this societal fear of what is, essentially, a great big GAME.

Jennifer in MamaLand
Spotted (myself!) around the Web…

See related post — Quotations XXV: Math is a Game


Don’t miss any of “Let’s Play Math!”:  Subscribe in a reader, or get updates by Email.


Quotable: What to Do When You’re Stuck

When a kid is feeling bad about being stuck with a problem, or just very anxious, I sometimes ask him to make as many mistakes as he can, and as outrageous as he can. Laughter happens (which is valuable by itself, and not only for the mood — deep breathing brings oxygen to the brain). Then the kid starts making mistakes. In the process, features of the problem become much clearer, and in many cases a way to a solution presents itself.

Maria Droujkova
Natural Math discussion of math club activities

Does It Work?

While I was collecting entries for the Math Teachers at Play #35 blog carnival, I ran across this post by Dave Lanovaz:


Don’t miss any of “Let’s Play Math!”:  Subscribe in a reader, or get updates by Email.