Tag Archives: Calculus

Infinite Cake: Don Cohen’s Infinite Series for Kids

Math Concepts: division as equal sharing, naming fractions, adding fractions, infinitesimals, iteration, limits
Prerequisite: able to identify fractions as part of a whole

This is how I tell the story:

  • We have a cake to share, just the two of us. It’s not TOO big a cake, ‘cuz we don’t want to get sick. A 8 × 8 or 16 × 16 square on the graph paper should be just right. Can you cut the cake so we each get a fair share? Color in your part.

Bobby Flay German Chocolate Cake

  • How big is your piece compared to the whole, original cake?
  • But you know, I’m on a diet, and I just don’t think I can eat my whole piece. Half the cake is too much for me. Is it okay if I share my piece with you? How can we divide it evenly, so we each get a fair share? How big is your piece?
  • How much of the whole, original cake do you have now? How can you tell?
  • I keep thinking of my diet, and I really don’t want all my piece of cake. It looks good, but it’s still just a bit too big for me. Will you take half of it? How big is that piece?
  • Now how much of the whole, original cake do you have? How could we figure it out?
    [Teaching tip: Don’t make kids do the calculation on paper. In the early stages, they can visualize and count up the fourths or maybe the eighths. As the pieces get smaller, the easiest way to find the sum is what Cohen does in the video below‌—‌identify how much of the cake is left out.]
  • Even for being on a diet, I still don’t feel very hungry…

For more precalculus fun, explore Don Cohen’s Map of Calculus for Young People: hands-on activities featuring advanced ideas, for students of any age.

The Next Day

  • Your best friend comes over to visit, and we share a new cake. If you, me, and the friend all get a fair share, how much of the cake do you get?
  • But you know, I’m still on that diet. My piece of cake looks too big for me. I’ll share it with the two of you. Let’s cut my piece so each of us can have a share. How big are those pieces?
  • How much of the whole, original cake do you have now? …

Can Young Kids Really Understand This?

how tall is triangle
We did infinite cakes in Princess Kitten’s fifth-grade year, if I remember right. Three years later, I gave my middle-school math club kids this geometry puzzle from James Tanton:

  • Two circles are tangent to each other and to an isosceles triangle, as shown. The large circle has a radius of 2, and the smaller circle’s radius is 1. How tall is the triangle?

I really didn’t expect my then-8th-grade-prealgebra daughter to solve this. But I thought it might launch an interesting discussion along the lines of “What do you notice? What do you wonder?

She stared at the diagram for a minute or two, while I bit my tongue to keep from breaking her concentration.

Then she said, “Oh, I see! It’s an infinite cake.”

It took me much longer to understand what she had seen so quickly: Imagine stacking up smaller and smaller circles in the top part of the triangle. Because all the proportions stay the same, each circle is exactly half as wide as the one below it. To find the height of the triangle, we can just add up all the diameters of the circles.

The puzzle is adapted from an AMC 10/12 Practice Quiz and is available here, with Tanton’s problem-solving tips for high school students. Tanton used similar triangles to find the height, but Princess Kitten’s infinite series approach is quicker and doesn’t require algebra.

Infinite Cake


Cake photos by Kimberly Vardeman via Flickr (CC BY 2.0): Strawberry Cream Cake and Bobby Flay German Chocolate Cake.

Tabletop Academy PressGet monthly math tips and activity ideas, and be the first to hear about new books, revisions, and sales or other promotions. Sign up for my Tabletop Academy Press Updates email list.


Reblog: Calculus Tidbits

[Feature photo above by Olga Lednichenko via Flickr (CC BY 2.0).]

This week I have a series of quotes about calculus from my first two years of blogging. The posts were so short that I won’t bother to link you back to them, but math humor keeps well over the years, and W. W. Sawyer is (as always) insightful.

I hope you enjoy this “Throw-back Thursday” blast from the Let’s Play Math! blog archives:


Finding the Limit

Eldest daughter had her first calculus lesson last night: finding the limit as delta-t approached zero. The teacher found the speed of a car at a given point by using the distance function, calculating the average speed over shorter and shorter time intervals. Dd summarized the lesson for me:

“If you want to divide by zero, you have to sneak up on it from behind.”


Harmonic Series Quotation

This kicked off my week with a laugh:

Today I said to the calculus students, “I know, you’re looking at this series and you don’t see what I’m warning you about. You look and it and you think, ‘I trust this series. I would take candy from this series. I would get in a car with this series.’ But I’m going to warn you, this series is out to get you. Always remember: The harmonic series diverges. Never forget it.”

—Rudbeckia Hirta
Learning Curves Blog: The Harmonic Series
quoting Alexandre Borovik


So You Think You Know Calculus?

Rudbeckia Hirta has a great idea for a new TV blockbuster:


Common Sense and Calculus

Sawyer-MathDelight

And here’s a quick quote from W. W. Sawyer’s Mathematician’s Delight:

If you cannot see what the exact speed is, begin to ask questions. Silly ones are the best to begin with. Is the speed a million miles an hour? Or one inch a century? Somewhere between these limits. Good. We now know something about the speed. Begin to bring the limits in, and see how close together they can be brought.

Study your own methods of thought. How do you know that the speed is less than a million miles an hour? What method, in fact, are you unconsciously using to estimate speed? Can this method be applied to get closer estimates?

You know what speed is. You would not believe a man who claimed to walk at 5 miles an hour, but took 3 hours to walk 6 miles. You have only to apply the same common sense to stones rolling down hillsides, and the calculus is at your command.


Don’t miss any of “Let’s Play Math!”:  Subscribe in a reader, or get updates by Email.


Math Teachers at Play #52

[Photo by bumeister1 via flickr.]

Welcome to the Math Teachers At Play blog carnival — which is not just for math teachers! We have games, lessons, and learning activities from preschool math to calculus. If you like to learn new things and play around with mathematical ideas, you are sure to find something of interest.

Scattered between all the math blog links, I’ve included highlights from the Common Core Standards for Mathematical Practice, which describe the types of expertise that teachers at all levels — whether in traditional, experimental, or home schools — should seek to develop in their math students.

Let the mathematical fun begin…

TRY THESE PUZZLES

By tradition, we start the carnival with a couple of puzzles in honor of our 52nd edition. Since there are 52 playing cards in a standard deck, I chose two card puzzles from the Maths Is Fun Card Puzzles page:

  • A blind-folded man is handed a deck of 52 cards and told that exactly 10 of these cards are facing up. How can he divide the cards into two piles (which may be of different sizes) with each pile having the same number of cards facing up?
  • What is the smallest number of cards you must take from a 52-card deck to be guaranteed at least one four-of-a-kind?

The answers are at Maths Is Fun, but don’t look there. Having someone give you the answer is no fun at all!

Continue reading Math Teachers at Play #52

Math Teachers at Play #46

Welcome to the Math Teachers At Play blog carnival — which is not just for math teachers! Here is a smorgasbord of ideas for learning, teaching, and playing around with math from preschool to pre-college. Some articles were submitted by their authors, others were drawn from the immense backlog in my blog reader. If you like to learn new things, you are sure to find something of interest.

Continue reading Math Teachers at Play #46

Quotable: From Calc 3

“We have 4 equations and only 4 unknowns so that gives us a fighting chance of actually solving it.”

— My daughter’s Calculus III teacher

“Of course, he was doing an easy problem compared to the homework. :P

— My daughter, Niner


Get all our new math tips and games:  Subscribe in a reader, or get updates by Email.


Math Teachers at Play #39

Welcome to the Math Teachers At Play blog carnival — which is not just for math teachers! If you like to learn new things and play around with ideas, you are sure to find something of interest.

Several of these articles were submitted by the bloggers; others were drawn from my overflowing blog reader. Don’t try to skim everything all at once, but take the time to enjoy browsing. Savor a few posts today, and then come back for another helping tomorrow or next week.

Most of the photos below are from the 2010 MAA Found Math Gallery; click each image for more details. Quotations are from Mike Cook’s Canonical List of Math Jokes.

Let the mathematical fun begin…

Continue reading Math Teachers at Play #39

Math Teachers at Play #35

35 is a tetrahedral number

Welcome to the Math Teachers At Play blog carnival — which is not just for math teachers.

Do you enjoy math? I hope so! If not, browsing these links just may change your mind. Most of these posts were submitted by the bloggers themselves; others are drawn from my overflowing Google Reader. From preschool to high school, there are plenty of interesting things to learn.

Let the mathematical fun begin…

Continue reading Math Teachers at Play #35