Tag Archives: Elementary school

New Hundred Chart Game: Odd-Even-Prime Race

100chart[Photo by geishaboy500 (CC BY 2.0).]

Counting all the fractional variations, my massive blog post 30+ Things to Do with a Hundred Chart now offers nearly forty ideas for playing around with numbers from preschool to prealgebra.

Here is the newest entry, a variation on #10, the “Race to 100” game:

(11.5) Play “Odd-‌Even-‌Prime Race.″ Roll two dice. If your token is starting on an odd number, move that many spaces forward. From an even number (except 2), move backward — but never lower than the first square. If you are starting on a prime number (including 2), you may choose to either add or multiply the dice and move that many spaces forward. The first person to reach or pass 100 wins the game.
[Hat tip: Ali Adams in a comment on another post.]

And here’s a question for your students:

  • If you’re sitting on a prime number, wouldn’t you always want to multiply the dice to move farther up the board? Doesn’t multiplying always make the number bigger?

Free-Learning-Guide-Booklets2


Claim your two free learning guide booklets, and be one of the first to hear about new books, revisions, and sales or other promotions.


World Maths Day 2015

If Your Kids Enjoy Competition

The world’s largest and most popular online education competition is returning in October 2015. For more details visit http://worldeducationgames.com.

We did this one year, but my daughter has never liked any math with time pressure, and these games were all about racing to get as many answers as you could in a short amount of time. Fun for kids who thrive on that sort of thing.

Free-Learning-Guide-Booklets2


Claim your two free learning guide booklets, and be one of the first to hear about new books, revisions, and sales or other promotions.


Infinite Cake: Don Cohen’s Infinite Series for Kids

Math Concepts: division as equal sharing, naming fractions, adding fractions, infinitesimals, iteration, limits
Prerequisite: able to identify fractions as part of a whole

This is how I tell the story:

  • We have a cake to share, just the two of us. It’s not TOO big a cake, ‘cuz we don’t want to get sick. A 8 × 8 or 16 × 16 square on the graph paper should be just right. Can you cut the cake so we each get a fair share? Color in your part.

Bobby Flay German Chocolate Cake

  • How big is your piece compared to the whole, original cake?
  • But you know, I’m on a diet, and I just don’t think I can eat my whole piece. Half the cake is too much for me. Is it okay if I share my piece with you? How can we divide it evenly, so we each get a fair share? How big is your piece?
  • How much of the whole, original cake do you have now? How can you tell?
  • I keep thinking of my diet, and I really don’t want all my piece of cake. It looks good, but it’s still just a bit too big for me. Will you take half of it? How big is that piece?
  • Now how much of the whole, original cake do you have? How could we figure it out?
    [Teaching tip: Don’t make kids do the calculation on paper. In the early stages, they can visualize and count up the fourths or maybe the eighths. As the pieces get smaller, the easiest way to find the sum is what Cohen does in the video below‌—‌identify how much of the cake is left out.]
  • Even for being on a diet, I still don’t feel very hungry…

Continue reading Infinite Cake: Don Cohen’s Infinite Series for Kids

Socks Are Like Pants, Cats Are Like Dogs

Support This New Book from Natural Math

Socks Are Like Pants, Cats Are Like Dogs by Malke Rosenfeld and Gordon Hamilton is filled with a diverse collection of math games, puzzles, and activities exploring the mathematics of choosing, identifying and sorting. The activities are easy to start and require little preparation.

The publisher’s crowdfunding goal is $4,000. The book is almost ready to go to press, and I can hardly wait to see it!

Free Learning Guide Booklets


Claim your two free learning guide booklets, and be one of the first to hear about new books, revisions, and sales or other promotions.


Review Game: Once Through the Deck

[Feature photo above by Shannon (shikiro famu) via Flicker (CC BY 2.0).]

Math Concepts: basic facts of addition, multiplication.
Players: one.
Equipment: one deck of math cards (poker- or bridge-style playing cards with the face cards and jokers removed).

The best way to practice the math facts is through the give-and-take of conversation, orally quizzing each other and talking about how you might figure the answers out. But occasionally your child may want a simple, solitaire method for review.

Continue reading Review Game: Once Through the Deck

Math Game: Chopsticks

Feature photo above by Harry (Phineas H) via Flicker (CC BY 2.0).

Math Concepts: counting up to five, thinking ahead.
Players: two or more.
Equipment: none.

How to Play

Each player starts with both hands as fists, palm down, pointer fingers extended to show one point for each hand. On your turn, use one of your fingers to tap one hand:

  • If you tap an opponent’s hand, that person must extend as many extra fingers on that hand (in addition to the points already there) as you have showing on the hand that tapped. Your own fingers don’t change.
  • If you force your opponent to extend all the fingers and thumb on one hand, that makes a “dead hand” that must be put behind the player’s back, out of the game.
  • If you tap your own hand, you can “split” fingers from one hand to the other. For instance, if you have three points on one hand and only one on the other, you may tap hands to rearrange them, putting out two fingers on each hand. Splits do not have to end up even, but each hand must end up with at least one point (and less than five, of course).
  • You may even revive a dead hand if you have enough fingers on your other hand to split. A dead hand has lost all its points, so it starts at zero. When you tap it, you can share out the points from your other hand as you wish.

The last player with a live hand wins the game.

When a two-points hand taps a one-point hand, that player must put out two more fingers.
When a two-points hand taps a one-point hand, that player must put out two more fingers.

Continue reading Math Game: Chopsticks

The Math Student’s Manifesto

[Feature photo above by Texas A&M University (CC BY 2.0) via Flickr.]

Note to Readers: Please help me improve this list! Add your suggestions or additions in the comment section below…

What does it mean to think like a mathematician? From the very beginning of my education, I can do these things to some degree. And I am always learning to do them better.

(1) I can make sense of problems, and I never give up.

  • I always think about what a math problem means. I consider how the numbers are related, and I imagine what the answer might look like.
  • I remember similar problems I’ve done before. Or I make up similar problems with smaller numbers or simpler shapes, to see how they work.
  • I often use a drawing or sketch to help me think about a problem. Sometimes I even build a physical model of the situation.
  • I like to compare my approach to the problem with other people and hear how they did it differently.

Continue reading The Math Student’s Manifesto